斐氏數列的通項為:
Fn=1/√5*([(1+√5)/2]^n-[(1-√5)/2]^n)=[(1+√5)/2]^n/√5*[1-[(1-√5)/(+√5)]^n]=)=[(1+√5)/2]^n/√5*[1-(-4/(1+√5))^2)^n]
註意到(1+√5)^2=6+2√5>4,當n→∞時,(-4/(1+√5)^2)^n→0
即Fn→[(1+√5)/2]^n/√5 (n→∞時)
Fn/Fn+1
→([(1+√5)/2]^n/√5)/([(1+√5)/2]^(n+1)/√5)=2/(1+√5)
=(√5-1)/2≈0.618 為黃金比