首先從壹個數列開始,它的前面兩個數是:1、1,後面的每個數都是它前面的兩個數之和。例如:1、1、2、3、5、8、13、21、34、55、89、144…..這個數列的名字叫做“斐波那契數列”,這些數被稱為“斐波那契數”。
裴波那契數列與黃金分割有什麽關系呢?經研究發現,相鄰兩個菲波那契數的比值是隨序號的增加而逐漸趨於黃金分割比的。即f(n)/f(n+1)-→0.618…。由於斐波那契數都是整數,兩個整數相除之商是有理數,所以只是逐漸逼近黃金分割比這個無理數。但是當我們繼續計算出後面更大的斐波那契數時,就會發現相鄰兩數之比確實是非常接近黃金分割比的。
舉例說明:比如股價從100元到200元,開始回調的時候用黃金分割率來預測股價在那個價位得到支撐。也就是168.2元、150元、138.2元,可以分這個三個價位。
妳可以買壹本股票技術有關的書籍。在裏面會有詳細的介紹。