控制論
的發明人維納在1923年指出,布朗運動在數學上是壹個隨機過程,提出了用“隨機微分方程”來描述,因此人們也把布朗運動稱為維納過程;
日本
數學家伊藤發展建立了帶有布朗運動幹擾項的隨機微分方程,
dx(t)=μ(t,x)dt+σ(t,x)dB
σ(t,x)是幹擾強度,μ(t,x)是漂移率
該方程描寫的過程是伊藤過程。伊藤過程可看成為壹般化的維納過程,它直接把布朗運動理解為隨機幹擾,從而賦予了布朗運動最壹般的意義。
布朗運動是隨機漲落的典型現象, 壹般地說,許許多多的宏觀觀測,都要受到布朗運動的限制. 法國經濟學家Bachelier L把股價的變動理想化為布朗運動,在此基礎上,經濟學家把伊藤過程方程用於描寫股票價格)(!)行為過程的壹種模式,為更確切地描寫股票價格的行為過程,伊藤過程方程被修正為
dS(t)/S(t)=μdt+σdB
其中σ為股票價格波動率、 μ為股票價格的預期收益率,人們把它稱為股價方程,它是壹個隨機微分方程.由伊藤過程描述的股價方程是壹個正向的隨機微分方程,從確定的S(0)=S0出發,根據布朗運動
的隨機變量B(t)在0-t之間的形態,來推斷軌線的統計行為.