2.證明了AM平分線∠BMH,然後由角平分線的性質得出結論。∵ABCD是正方形,∴∠巴德= 90,∠曼= 45,∴∠巴姆+∠丹= 45。∵AB=AD是正方形,∴∠ ABM =∠ ADN = 90,AB=AD,AM = An,∴△ABM≌△ADN,∴∠ BAM = ∠ Dan,∴∠AMB=90 -45 /2。∠∠man = 45、AM=AN、∴∠amh=(180-∠man)/2 = 90-45/2 .∴ab=ah。/2,ab⊥bm、ah⊥hm 90-45號AMB
3.通過第二題的方法得出結論。【此處省略】第二個問題:將MB擴展到e,使be = dn。∵ABCD是平方,∴ AB = AD,∠Abe =∠adn = 90°,be = DN,∴△ABE≌△ADN,∴ AE = An,∠BAE =∞。∵ABCD是正方形,∴∠ Bad = 90,∠曼= 45,∴∠ BAM+∠丹= 45,∴∠ BAM+∠ BAE = 45。由AE = An,AM = AM,∠ Mae = ∠ Man = 45,我們得到:△Mae?△man,∴ AB = Ah(對應身高)。
第三個問題:用銳角三角函數定義,就是:tan ∠ mah = MH/ah = 2/ah,tan ∠ nah = NH/ah = 3/ah。和∠ man = ∠ mah+∠ nah = 45,∴ tan (∠ mah+∠ nah) = 1,∴(tan∠mah+tan∠nah)/∴2/ah+3/ah=1-(2/ah)(3/ah,∴5AH=AH^2-6,∴AH^2-5AH-6=0,∴(AH-6)(AH+1)=0。很明顯:ah+1 > 0,∴ ah = 6。................................................................................................................................................