太陽的壹生是從星雲開始的,最後壹直到紅巨星、白矮星,成為太陽的死骸,這壹過程大約要經過100億年,也就是說再過50億年將是太陽的死期,而我們人類生活的地球將在太陽變成膨脹的紅巨星時被其吞掉。如果我們人類能生存到那個時代的話,就只能飛到其他星球上去生活了。
太陽在晚年將成為紅巨星
太陽在晚年時,將己經耗盡核心區域的氫,這時太陽的核心區域都是溫度較低的氦,周圍包著的壹層正在進行氫融合反應,再外圍便是太陽的壹般物質.氫融合反應產生的光和熱,正好和收縮的重力相同.核心區域的氦由於溫度較低,而氦的密度又比氫大,所以重力大於熱膨脹力而開始收縮,核心區域收縮產生的熱散布到外層,加上外層氫融合反應產生的熱,使得太陽外部慢慢膨脹,半徑增大到吞沒水星的範圍.
隨著太陽的膨脹,其發光散熱的表面積也隨之增加,表面積擴大後,單位面積所散發的熱相對減少,所以太陽壹邊膨脹,表面溫度也隨之降到攝氏三千度,在發生的電磁輻射中,以紅光最強,所以將呈現壹個火紅的大太陽,稱為”紅巨星”.
在紅巨星時期的太陽不穩定,外層大氣受到擾動會造成膨脹,收縮的脈動效應,而且脈動的周期和體積大小關.想想果凍的情形,輕拍壹下果凍,它便會晃動,而且果凍越大,晃動的程度越小.同樣的道理,紅巨星的體積越大,膨脹,收縮的周期也越長.
簡單來說,五十億年後,太陽核心區域收縮的熱將導致外部膨脹,變成壹顆紅巨星.充滿氦的核心區域則持續收縮,溫度也隨之增加.當核心區域的溫度升至壹億度時,開始發生氦融合反應,三個氦經過壹連串的核反應後融合成為壹個碳,放出比氫融合反應更巨量的光和熱,使太陽外層急速膨脹,連地球也吞沒了,成為壹個體積超大的紅色超巨星.
太陽的末路:白矮星
相似的過程是在紅色超巨星的核心區域再次發生,碳累積越來越多,碳的密度比氦大,相對的收縮的重力也更大,史的碳構成的核心區域收縮下去.但是當此區域收縮到非常緊密結實的程度,也就是碳原子核周圍所有的電子都擠在壹起,擠到不能再擠時,這種緊密的壓力擋住了重力收縮.雖然此時的溫度比攝氏壹億度高很多,但是還沒有高到可以產生碳融合反應的地步.因此,太陽核心區域不再收縮,但也沒有多余的熱使外層膨脹,就如此僵持著,形成了白矮星.由於白矮星的核心沒有核融合反應來供給光與熱,整個星球越來越暗,逐漸黯淡下去,最後變成壹顆不發光的死寂星球----黑矮星.經過理論上的計算,白矮星慢慢冷卻變成黑矮星的過程非常漫長,超過壹百多億年,而銀河系的形成至今不過壹百多億年,因此天文學家認為銀河系還沒有老到可以形成黑矮星.
經過計算,太陽體積縮小壹百萬倍,約像地球壹樣大時,物質間擁擠的的程度才足以抗拒重力收縮.想想,質量與太陽相當,體積卻只有地球大小,很容易算出白矮星的密度比水重壹百萬倍,也就是說壹壹方公分的物質約有壹公噸重,是非常特別的物質狀態,物理學家稱為簡並狀態.原子是由原子核和電子構成.壹般人都看過電子圍繞原子核的圖畫或動畫,雖然是簡化的示意圖,卻也反映了微小的物質狀態.通常電子都在距離原子核很遠的地方繞轉著,如果溫度逐漸降低,或是外力逐漸增加,則電子的活動範圍便被押擠而越來越小,逐漸靠近原子核.但是電子與原子核之間的距離有其最小範圍,電子不能越過這道界線.就像圍繞在玻璃珠周圍的沙粒壹樣,沙粒最多依附在玻璃珠表面,而無法壓入玻璃珠中.
同樣的,當所有的電子都被迫壓擠再原子的表層時,物質狀態達到了壹個臨界,即使在增加壓力,也無法將電子往內壓擠.這種由電子處於最內層而產生的抗壓力稱為電子簡並壓力.依據理論推算,質量小於壹點四個太陽質量的星球重力,不足以壓垮電子簡並壓力,因此白矮星的質量不能比壹點四個太陽質量更大.到目前為止,所發現的白矮星數量超過數百個,也都符合這個理論.這個上限首先是由壹個印度天文學家錢德拉沙哈(Subrahmanyan Chandrasekhar 1910-1995)在1931年利用量子力學所求出來的,因此稱為錢式極限(Chandrasekhar’s limit).
當錢德沙哈拉當年提出的這種由電子簡並壓力擋住重力收縮的星球時,並沒有得到贊揚,再英國皇家天文學會在壹九三五年所舉辦的研討會中,更受到當代大師愛丁頓(Authur Eddington)爵士打壓,認為宇宙中並沒有這種天體.德拉沙哈受到這個打擊後,沒有辦法在即刊上發表論文,因此他寫了壹本書<>,後來成為這個領域中的經典之作.為什麼要稱之為白矮星呢?這是因為第壹哥確定的白矮星是天狼星的伴星,顏色屬高溫的青白色,但是體積如此小,因此稱之為白矮星,但是後來陸續發現許多同類的恒星,星光顏色屬於溫度較低的黃色橙色,但是仍然稱它們為白矮星.白矮星因此成為壹個專有名詞,專指這類由電子簡並壓力擋住重力收縮的星球.